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An integrodifferential equation is derived for the bending of a beam (plate) under con- 
ditions of nonlinear transient creep. The problem of transient creep of a kink in an ice 
sheet lying on a hydraulic base and subjected to a concentrated load is investigated. The 
investigation was performed in two dimensions. The well-known model of Glen [i] is used to 
describe prolonged loading of ice. A numerical example is given. 

i. We shall study transient creep in a beam undergoing bending under a prescribed 
constant load. The deflection is assumed to be downward. The x axis is oriented along the 
axis of the beam and the z axis is oriented vertically downward. The relative elongation e 
of a fiber in the beam consists of the elastic elongation e I and the creep strain ei: 

e = e  1 -+- %, (i.I) 

and the elastic elongation el = o(t)/E [o(t) is the normal stress and E is the elastic modu- 
lus]. We shall assume that the creep strain is a power-law function of o(t), namely, 

t 

e= = ~ B (t -- T) o TM (~) d~ 
0 

Here m is the creep index, a dimensionless constant; for ice m > i. The function B(t - ~) 
is the creep kernel, having the dimensions (kg/m2)-m.sec -l It is a positive decreasing 
function of time, measured from the onset of creep, and asymptotically approaches the limit- 
ing value B~ = const. Using for B(t - ~) the experimentally obtained curve for ice [i], we 
assume that 

B ( t  - -  ~) = B ~  -{- B o e x p  [ - - 9 ( t  - -  T)]. ( 1 . 2 )  

Since the sign of e and therefore the sign of o will depend on the sign of z, we represent 
Eq. (i.i), based on everything we have said so far, in the form 

t 

e = ~ ( t ) lE-} -  S B (t - -  ~) ] ~ (~) ]m-aa (~) d'c. ( 1 . 3  ) 
0 

The relative elongation of a fiber in the beam at a distance z from the neutral axis, 
according to the hypothesis of plane sections, e = z/p (p is the radius of curvature of the 
neutral layer). When the deflection is small it can be assumed, with adequate accuracy, 
that e = zdiv/dx 2. Making this substitution in Eq. (1.3) we obtain 

t 

d2v  o 

z dx-~. = - f  + B (t - -  ~) [ ~ l"-~d .~ .  ( 1 . 4 )  
0 

Let ~ be the area of the transverse cross section of the beam. Then in some section of 

the beam the bending moment M----;z~dQ. Multiplying Eq. (1.4) by zd~ and integrating over 

the transverse cross section we find 

Ox 2 
o ~2 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
pp. 132-138, September-October, 1990. Original article submittedOctober 31, 1988; revision 
submitted March 28, 1989. 

0021-8944/90/3105-0793512.50 �9 1991 Plenum Publishing Corporation 793 



where 1= ] z2d~ is the moment of inertia of the transverse cross section. Since o and z 

a l w a y s  h a v e  t h e  same  s i g n ,  t h e  i n n e r  i n t e g r a l  i n  t h e  r e l a t i o n  ( 1 . 5 )  c a n  b e  w r i t t e n  a s  

[lolmlzld~. (1.6) 

L e t  m -1  + n -1  = 1.  T h e n ,  b y  v i r t u e  o f  H o l d e r ' s  i n e q u a l i t y ,  

m \ l i r a  SIZ[II~Id.O~<[! ([zll/'rr~l(yl)md~-~]l/'lrt'(Slzld~"~)l]n=Cl(! [z[llJ ' d~.) , 

Thus, the lower bound on the integral (1.6) has been obtained. To obtain the upper 
bound, we use Favard's inequality [2] 

r x (9 

( p  > 1 ;  f i s  a n o n n e g a t i v e  c o n t i n u o u s  c o n c a v e  f u n c t i o n ,  n o t  e q u a l  i d e n t i c a l l y  t o  z e r o  on  ~ ) .  
We n o t e  t h a t  

where m > 1 and [o[ is a concave function. Then 

o r  

; (; I 
m 

dfl -m = C 2  M . 

Therefore, 

We s h a l l  c a l c u l a t e  t h e  c o n s t a n t s  C~ a n d  C 2 f o r  a beam w i t h  a r e c t a n g u l a r  p r o f i l e  o f  
u n i t  w i d t h  a n d  h e i g h t  h :  

C~ = = (2/h) 2(=-1), CE = = 2mC?=/(m + t). 

We i n t r o d u c e  

C* = (C~ -= -6 C~-~)/2 = ( t  -6 3m) C~"/2 (m + 1), 

Then it is easy to show that for m ranging from i to 13 the ratio C*/CI -m = (1-1.43) and 
C*/C2 -m = (1-0.77). So, it can be assumed approximately that 

S I ~ [~1 zld'q~-- C'31~" ( 1 . 7 )  
f~ 

Using Eq. (1.7) we transform the relation (1.5) into the form 

I d~v M S dTZ--_-E.{-C* B(t--~)Mmd~. (1.8) 
o 

Let q(x) be the intensity; of the distributed load and Q(~) the shearing force in some 
section of the beam. Then q(x), Q(x), and M(x), according to the theory of Zhuravskii- 
Shvedler, are related by known relations. Based on this we write 
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d2M/dx ~ = --q, dM/dx = Q. (1.9) 

We note that q(x) is the per unit length pressure transferred from the beam to the base. 
Let q(x) at any point be proportional to the deflection of the beam. Denoting by k the co- 
efficient of proportionality (Winkler's bed constant of the base), we rewrite the first for- 
mula in Eq. (1.9) as 

d2M/dx ~ =--kv .  ( 1 . 1 0 )  

Differentiating this relation twice we obtain 

d2v/dx~ = ( -l/k)d~M/dxt ( 1 . 11 )  

Substituting Eq. (i.ii), the relation (1.8) assumes the form 

t 

d~M + ~ M + k ~  ~ B(t--~)M~(x,  ~ ) & = O .  ( 1 . 1 2 )  
dx 4 

o 

Thus, we have derived an approximate integrodifferential equation for the bending mo- 
ment in the case of transient creep in a beam lying on a uniform base. It should be noted 
that Eq. (1.12) also holds for an infinite plate subjected to cylindrically bending; it is 
merely necessary to replace E1 by the flexural rigidity D. 

2. We shall examine the case of the bending of a beam of thickness lying on a hydrau- 
lic base, which we shall model by a Winkler base. Let the density of the liquid p* = const. 
The k = p'g, where g is the acceleration of gravity. The bending is caused by a concentrated 
force G. We assume that the law (1.3) can be used to describe the material of the beam. 
Then the bending problem reduces to the integrodifferential equation (1.12). We write the 
boundary conditions of the problem: The deflection and its first derivative vanish at in- 
finity 

v(__+o~) = 0; ( 2 . 1 )  

v'(+__c~) = O. ( 2 . 2 )  

The curved axis of the beam must have a horizontal tangent at the point x = 0: 

(v'L=o = o. ( 2 . 3 )  

The transverse force for the right side of the beam at x = 0 is 

(M'):r = --8/2. ( 2.4 ) 

The initial condition is that at t = 0 the classical instantaneous elastic solution is ob- 
tained. As a result of the symmetry it is sufficient to study only the part of the beam 
to the right of the applied force. We introduce the reduced time 

$ =  I - -  e-~", ~. ~ [0, t), (~ = I - -  e -~L  r ~ [0, 1), ( 2 . 5 )  

where the parameter D is the same parameter as in the relation (1.2), and is determined ex- 
perimentally. With the help of Eq. (1.2) and (2.5) we transform Eq. (1.12) into the form 

d 4 M  " k kC* M m 

dx ~ -{-L-TM+-/-  d- B~ ~---~-sd~+Bo(l--~)  ( t - ~ )  -~ dff = 0 ,  ( 2 . 6 )  
0 

We shall seek the solution of Eq. (2.6) in the form of the series 

oo 

~r  (x, ~) = . ~  M~ (x) ~i. ( 2 . 7 )  
i = 0  

We shall study six terms in the expansion (2.7). Substituting Eq. (2.7) into Eq. (2.6), 
performing a series of transformations, and equating the expressions with identical powers 
of ~I, we arrive at the following system of equations: 

3/lo v + GMo = O; ( 2 . 8 )  

M~ v +  J1Mi=--(d2Fi+d3Ti),  i = l  . . . .  ,5 .  ( 2 . 9 )  
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Here we have introduced the following notation: 

and 

~1 = k/EI,  J2 = kC*B~/I~t, J3 = kC*Bo/I~, 

F1---- fo, ' TI = fo, 

T2 = (t/2)(fo + 10, T~ = (l/2)fl, 

F3 = (t /3)(fo + fl  + f~), T3 = (t /6)( /1  + 2f2), 

F~ = (t/4)(f o + /1 "~ f2 -{- f3), T 4 = (l/i2)(f~ -{- 2f2 q- 3f3), 

F~ = (t/5)(f o -F f~ n u f~ q- f3 -{- f,), T~ = (1/20)(fl -{- 2f2 -J- 3f3 q- 4/~), 

tion 

Io = M~, 11 = M~m (MJM0), 

I~ = Mo [m (M2/Mo) + (1/2) m(m --  1) (M1/M0)2], 

]3 ----- M o  [m ( M j M 0 )  -I- ra (m - -  I )  (MI/Mo) (MJMo) + 
+ (1/6) m (m - -  l) (m - -  2) (M~iMo)3], 

/4 = M~ [m (MJMo)+ ( i /2 )  m (m - -  i )  (MJMo) ~ + (1/2) m (m - -  i )  (m - -  2) X 

• (M1/Mo) ~ (MJMo) + (1/24) m (m - -  l) (m - -  2) (m - -  3) (M1/Mo)4]. 

a) Zeroth Approximation. At t = 0 we obtain the classical instantaneous elastic solu- 

M0 ---- (G/4~)e-~(cos ~x - - s i n  ~x), ( 2 . 1 0 )  
t 

% = (-- G~/2k) e - ~  (cos ~x q- sin ~x), v0 ---- (G~/k) e -~x sin ~x. 

b) F i r s t  A p p r o x i m a t i o n .  We t a k e  two t e r m s  o f  t h e  e x p a n s i o n  ( 2 . 7 ) .  Then Eqs.  ( 2 . 8 )  
and ( 2 . 9 )  w i t h  i = 1 must  be s t u d i e d .  Using  t h e  n o t a t i o n  i n t r o d u c e d  and t h e  r e s u l t s  o f  t h e  
z e r o t h  a p p r o x i m a t i o n ,  Eq. ( 2 . 9 )  w i t h  i = 1 can  be w r i t t e n  in  t h e  form 

M~ v + J1M1 = Y4e-~m~ cos TM (.~/4 § ~x) ( 2 . 1 1 )  

(A = ( -  ke*/x ) (B0 + 

The solution of the homogeneous equation (2.11) is 

M~ = e ~x (A 1 COS ~X q- B 1 sin ~x) q- e - ~  (C 1 cos ~x q- D 1 sin ~x). ( 2 . 1 2 )  

We f i n d  a p a r t i c u l a r  s o l u t i o n  o f  t h e  inhomogeneous  e q u a t i o n  ( 2 . 1 1 )  by t h e  method o f  v a r i a -  
t i o n  o f  c o n s t a n t s .  The d e r i v a t i v e s  o f  t h e  f u n c t i o n s  s o u g h t  a r e  d e t e r m i n e d  f rom t h e  c o r r e -  
spond ing  system of equations, which are too complicated to write out here. To obtain the 
functions At, B l, C I, and D I themselves it is necessary to study four types of integrals: 

~exp [--~(m q- l)x]  cos ~x costa(n~4 'F ~x)dx = 

= - - [~f2~(m Jr l ) ] - lexp [--~(m -F i)x]cosm+l(n/4 q- ~x), 

~exp [--~(m --  l)x] cos ~x cosm(n/4 + ~x)dx = 

= -1 exp - i ) x ]  cos +l(n/4 + 

- -m -1 ]exp [--~(m --  l)x] sin ~x costa(n/4 q- ~x)dx, 

~exp [--~(m -F i)x] sin ~x cos~(n/4 q- ~x)dx = 

= - - ( V ~ )  -1 exp [ (mn L i),~/4][(m -F t)  -x exp [--(m + l)y] cos~+~y n L 

Jr 2 ~(exp (--y) cos y)~+~dy], 

~exp [--~(m --  l)x] sin ~x costa(n/4 ~- ~x)dx = 

= _ _ ( ~ f ~ ) - I  exp [(m --  l)n/4][(m q- l) -1 exp [--(m - -  i)y] cos~+~y + 

+2m(m -F i)  -1 ~exp [--(m --  l)y] cosm+lydy]. 

Here  we i n t r o d u c e  t h e  n o t a t i o n  y = ~ /4  + ~x. Using t h e  r e c u r r e n c e  r e l a t i o n  f rom [ 3 ] ,  we ob-  
t a i n  

j'exp[--(rn - -  l)y]cosm+lydy = [2(m2 -F i)]-l{exp [--(m - -  l)y]cosmy• 

X [--(m - -  1) cos y -F (m -F i) sin y] q- m(m "-F l)~[exp (--y) cos y]'n-ldy}. 
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Thus, all integrals reduce to the calculation of one main integral of the form ~[exp(-y) x 
cos y]~dy, where ~ = {(m + i), (m - i); m > i}. Based on everything we have said so far, 
the general solution of Eq. (2.11) can be written as 

= cosy) ~§ 

( 2 . 1 3 )  
q- e-U(m cosy  ~- s ing) ~ e-(m-am cosm+ 'y  dy} ( Js = J , exp (am/4) l [ @" (m + t ) ] - ' ) .  

Using the relation (i.i0), we find 

v 1 = --k-ld'~M1/dx 2 = --2~2k-l[exp ([3x)(B1 cos ~x - -  

- -A  1 sin ~x) @ exp (--~x)(C 1 sin ~x - -  D 1 cos ~x)] - -  2J~[t~k-lX 
• [exp (--my) cosrn+"~g n u (m + 1) exp (g) cosy~[exp  (--g) cos g]ra+ldg "-l- 

exp (--g)(m sin g - -  cos y) ~exp [--(m - -  l )g]  cosm+lgdy]. 

(2.14) 

It is not difficult to write a relation for the derivative of v1: 

! 

vl = -- 2~ak -1 {exp (~x) [(B 1 -- A1) cos ~x -- (A 1 ~- B1) sin ~x] -F 

-t- exp ( - -  ~x) [(D 1 + Ci) cos ~x - -  (C 1 - -  D1) sin [3x]} - -  2J~3k -1 X 

X {--  2 exp ( - -  my) cos m+l y sin y -t- (m -}- t) exp (y) (cos g - -  sin g) X 

X 2 [exp ( - -  y) cos y]~+ldy -t- exp ( - -  g) [(m "4- t) cos y - -  (m - -  t) sin g] X 

X ~ exp [ - - ( m - - 1 ) g ] c o s m + I g d g } .  

Using the boundary conditions (2.1) and (2.2), we obtain 

(2.15) 

A 1 = B 1 : 0. 

The condition (2.3) makes it possible to determine the constant CI: 

C1 = --D~ @ ]/~2J5{ (V'~) -{~+1} exp ( - -am/4)  - -exp  ( - - a / 4 ) •  

X [~exp [--(m - -  l)g] cosm+]gdg]y=~/4}. ( 2 . 1 6 )  

With the help of Eq. (2.4) we find the constant Dl: 

D 1 : --G/(4~) ~- J~(l/~)-l{(V~2)-(m+ ~) exp ( - a m ~ )  - -  

- - [ (m  n c t) exp (a/4)~[exp ( - y )  cos glm+ldy --  (m --  1) exp ( - - a /4 )X  ( 2 . 1 7 )  

X 5exp [--(m - -  t)g] cosm+lgdg]y=~/4}. 

Thus, we have obtained analytically the first approximation of the problem 

w h e r e  M0, v 0 ,  and v 0 '  a r e  d e t e r m i n e d  by t h e  r e l a t i o n s  ( 2 . 1 0 ) ,  M1 i s  d e t e r m i n e d  by t h e  r e l a -  
t i o n s  ( 2 . 1 2 )  and ( 2 . 1 3 ) ,  v 1 i s  d e t e r m i n e d  by  Eq.  ( 2 o 1 4 ) ,  and v l '  i s  d e t e r m i n e d  by Eq.  ( 2 . 1 5 ) ;  
r i s  r e l a t e d  w i t h  t by t h e  d e p e n d e n c e  ( 2 . 5 ) ;  a n d ,  t h e  c o n s t a n t s  C 1 and Dx a r e  g i v e n  by  t h e  
f o r m u l a s  ( 2 . 1 6 )  and  ( 2 . 1 7 ) ,  r e s p e c t i v e l y .  

c )  H i g h e r - 0 r d e r  A p p r o x i m a t i o n s .  The  s e c o n d  and h i g h e r  o r d e r  ( i n c l u d i n g  f i f t h )  a p p r o x i -  
m a t i o n s  of the problem were obtained numerically. The right sides of Eqs. (2.9) with i = 2, 
..., 5 were written out in detail. The system of the main equations and the boundary condi- 
tions were transformed into a form convenient for programming. The standard system arising 
when the boundary-value problems for fourth-order ordinary differential equations are approx- 
imated was obtained. The system was solved by Gauss' elimination method, based on which an 
algorithm, called the monotonic sweep algorithm [4], was written. A FORTRAN computer program 
for calculating the values of M i and v i of interest to us was written. 

d) Limiting Solutions. We shall study the behavior of the solution of Eq. (1.12) for 
the bending moment in the limit t ~ ~. 

i) Let in Eq. (1.2) B~ = 0, but B 0 ; 0. Then, it can be assumed that 

(2.18) 
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Using Eq. (2.18), we obtain from Eq. (1.12) 

? 

M i  v + (k/E1) M ~  -4- (kC*Bo/I) M ~  y e-~(t-~)d~ = O. 
0 

Calculating the integral and passing to the limit t ~ ~, we find that the function M~(x) 
s a t i s f i e s  t h e  e q u a t i o n  

iv M ~  q- (k/EI) M~ 4- (kC*Bo/Ip) .,1I~ = O. 

2) Assume t h a t  in  Eq. ( 1 . 2 )  t h e  c o n s t a n t  B0 = 0,  b u t  B~ ~ 0. 
( 1 . 1 2 )  once  w i t h  r e s p e c t  t o  t :  

( 2 . 1 9 )  

We differentiate Eq. 

~ I u  + (k/EI)A/~ .~ ( k C , B j I ) M  ~ = O. 

We s h a l l  s e e k  t h e  s o l u t i o n  o f  t h i s  e q u a t i o n  in  t h e  l i m i t  t ~ ~ in  t h e  form 

( 2 . 2 0 )  

M(x ,  t) N M ~ ( x ) t  -(m-1)-1, m > t .  ( 2 . 2 1 )  

S u b s t i t u t i n g  Eq. ( 2 . 2 1 )  i n t o  Eq. ( 2 . 2 0 ) ,  we f i n d  t h a t  in  t h i s  c a s e  t h e  f u n c t i o n  M~(x) s a t i s -  
f i e s  the equation 

:%I~ + (~EI )  M ~  --  (kC*B~[I) (m --  t) M~ = 0. ( 2 . 2 2 )  

To s o l v e  Eqs .  ( 2 . 1 9 )  and ( 2 . 2 2 )  t h e y  must  be s u p p l e m e n t e d  by t h e  r e l a t i o n  ( 1 . 1 0 )  and 
t h e  b o u n d a r y  c o n d i t i o n s  ( 2 . 1 ) - ( 2 . 4 ) ,  r e s p e c t i v e l y .  Then t h e  method o f  s p e c i a l  o r t h o n o r m a l  
p o l y n o m i a l s  can  be a p p l i e d ;  t h e  i d e a  o f  t h e s e  p o l y n o m i a l s  i s  b r i e f l y  p r e s e n t e d  in  [ 5 ] .  

3) Assume t h a t  in  Eq. ( 1 . 2 )  b o t h  c o n s t a n t s  B0 and B~ a r e  d i f f e r e n t  f rom z e r o .  We i n -  
t r o d u c e  t h e  n o t a t i o n  h = k / E I ,  B = k C * B J I ,  and C = kC*B0/ I ,  and r e w r i t e  Eq. ( 1 . 1 2 )  in  t h e  
form 

t 

AM + [8 + imd  = 0 (2 .23)  
0 

Next, differentiating Eq. (2.23) once and twice with respect to t and eliminating from the 
relations obtained and Eq. (2.23) the integrals we arrive at the following differential 

equation: ~IIV ~- A~I -k (B -~ C)mMm-l~I -[- ~(~I Iv -[- AM ~- BI~ m) = O. (2.24) 

Now, if we assume that as t + ~, M(x, t) satisfies the relation (2.18), then from Eq. (2.24) 
we find M~(x) E 0. Therefore, it must be assumed that as t + ~ the function M(x, t), which 
is a solution of Eq. (2.24), approaches zero. The solution of Eq. (2.24) for large t can be 
sought in the form, ~for example, of a series 

M (x, t) = ~ Mi (x) e -ivt, ( 2 . 2 5 )  
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if m is an integer (~ is an arbitrary constant). Substituting Eq. (2.25) into Eq. (2.24) 
and equating the terms with like powers of exp(-i~t), we obtain an infinite system of linear 
differential equations which must be solved successively to determine the functions Mi(x). 

e) Example. To illustrate the problem examined above we shall present a numerical exam- 
ple. We take the experimental values from [i]. The following starting data are provided to 
the program: t = (0-15) sec; E = 4.109 kg/m.sec2; G = 2500 kg; (B 0 = 84.10 -s, B~ = 5.6.10 -s) 
(kg/m2"sec2)-msec-l; B = 3"10-2 sec-l; m = 1.72; h = 0.25 m; p* = 103 kg/m3; g = 9.81 m/sec 2. 

Figures I and 2 show the curves of the approximation for the bending moment M and the 
approximations for the deflection v as a function of the coordinate x for a fixed time t = 
15 sec. The curves i correspond to the zeroth approximation of the problem (classical instan- 
taneous elastic solution) and the curves 2 are the first approximation of the problem. These 
curves were calculated using the formulas obtained analytically (the points a and b above). 
It was established numerically that for the time t = 15 sec five approximations of the prob- 
lem are adequate (curve 3). As the time increases more terms must be retained in the series 
expansion (2.7). 

1. 
2. 
3. 

. 
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FLOW AND SEPARATION OF A RAREFIED BINARY GAS MIXTURE 

IN A CYLINDRICAL GAP WITH SUPERSONIC ROTATION 

OF THE OUTER CYLINDER 

Vo D. Borisevich and So V. Yupatov UDC 533.6.011.5:621.039.342 

Study of cylindrical Couette flow at Knudsen numbers Kn = 10-2-1 is not only a classi- 
cal problem of rarefied gas dynamics, but is also of practical interest [i, 2]. In the case 
where the outer cylinder is fixed while the inner one rotates with a velocity equivalent to 
a Mach number M ~ i, the flow has been studied experimentally [3] and numerically, both by 
direct statistical modeling [i], and by solution of model kinetic equations [2, 4]. At su- 
personic inner cylinder velocities [5, 6] analyzed the effect on flow characteristics of the 
Mach number and gap size. Significanty fewer studies exist for the case where the outer 
cylinder rotates while the inner is at rest. A numerical solution of the Boltzmann equation 
was found for that problem in [2] for the BGK model. Flow of a rarefied binary gas mixture 
in a planar gap was studied for various ratios of component masses and concentrations in [7], 
which obtained velocity distributions and components of the viscous stress tensor in the gap. 

i. The present study will perform a numerical investigation of the flow of a rarefied 
binary gas mixture with molecular masses ~I = 300 and ~2 = 400 in the gap between coaxial 
cylinders using the direct statistical modeling method of 48]. The outer cylinder of radius 
r 2 rotates with an angular velocity~2 (M = ~2r2/(TRTo/~2)I/2 3), and the indices i and 2 
below will refer to quantities defined on the surfaces of the inner and outer cylinders, re- 
spectively; T o is the temperature of both cylinders; R is the ideal gas constant; y is the 
adiabatic index for the heavy gas, equal to unity; Kn = ~2/(r2 - rl) was varied over the 
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